
C Keywords and Identifiers

In this tutorial, you will learn about keywords; reserved words in C programming
that are part of the syntax. Also, you will learn about identifiers and proper way to
name a variable.

Table of Contents

Character set

Keywords

Identi�ers

Rules for naming Identi�ers (variables, functions etc.)

Character set

Character set is a set of alphabets, letters and some special characters that are valid in

C language.

Alphabets

Uppercase: A B C X Y Z
Lowercase: a b c x y z

C accepts both lowercase and uppercase alphabets as variables and functions.

Digits

0 1 2 3 4 5 6 7 8 9

Special Characters
Special Characters in C Programming

, < > . _

() ; $:

% [] # ?

' & { } "

^ ! * / |

- \ ~ +

White space Characters

blank space, new line, horizontal tab, carriage return and form feed

Keywords

Keywords are prede�ned, reserved words used in programming that have special

meanings to the compiler. Keywords are part of the syntax and they cannot be used as

an identi�er. For example:

int money;

Here, int is a keyword that indicates 'money' is a variable of type integer.

As C is a case sensitive language, all keywords must be written in lowercase. Here is a

list of all keywords allowed in ANSI C.

https://www.programiz.com/c-programming/c-variables-constants

Keywords in C Language

auto double int struct

break else long switch

case enum register typedef

char extern return union

continue for signed void

do if static while

default goto sizeof volatile

const �oat short unsigned

Along with these keywords, C supports other numerous keywords depending upon the

compiler.

All these keywords, their syntax and application will be discussed in their respective

topics. However, if you want a brief overview on these keywords without going further,

visit list of all keywords in C programming.

Identifiers

Identi�er refers to name given to entities such as variables, functions, structures etc.

Identi�er must be unique. They are created to give unique name to a entity to identify it

during the execution of the program. For example:

int money;
double accountBalance;

Here, money and accountBalance are identi�ers.

Also remember, identi�er names must be di�erent from keywords. You cannot use int
as an identi�er because int is a keyword.

Rules for naming identifiers

1. A valid identi�er can have letters (both uppercase and lowercase letters), digits and

underscores.

2. The �rst letter of an identi�er should be either a letter or an underscore.

https://www.programiz.com/c-programming/list-all-keywords-c-language

3. There is no rule on how long an identi�er can be. However, you may run into

problems in some compilers if identi�er is longer than 31 characters.

Good Programming Practice

You can choose any name as an identi�er following the rules (excluding keywords).

However, give meaningful name to an identi�er (variables, function names etc). It will

make your and your fellow programmers life much easier.

C Programming Constants and Variables

In this tutorial, you will learn about variables, rules for naming a variable, constants
and different type of constants in C programming.

Table of Contents

Variables

Rules for naming a variable

Constants

Integers

Floating-point Numbers

Character Constants

Escape Sequences

String Literals

Enumerations

Variables

In programming, a variable is a container (storage area) to hold data.

To indicate the storage area, each variable should be given a unique name (identi�er).

Variable names are just the symbolic representation of a memory location. For example:

int playerScore = 95;

Here, playerScore is a variable of integer type. Here, the variable is assigned an integer

value 95 .

The value of a variable can be changed, hence the name variable.

char ch = 'a';
// some code
ch = 'l';

https://www.programiz.com/c-programming/c-keywords-identifier

Rules for naming a variable

1. A variable name can have letters (both uppercase and lowercase letters), digits and

underscore only.

2. The �rst letter of a variable should be either a letter or an underscore.

3. There is no rule on how long a variable name (identi�er) can be. However, you

may run into problems in some compilers if variable name is longer than 31

characters.

Note: You should always try to give meaningful names to variables. For example:

firstName is a better variable name than fn .

C is a strongly typed language. This means, variable type cannot be changed once it is

declared. For example:

int number = 5; // integer variable
number = 5.5; // error
double number; // error

Here, the type of number variable is int . You cannot assign �oating-point (decimal)

value 5.5 to this variable. Also, you cannot rede�ne the type of the variable to double .

By the way, to store decimal values in C, you need to declare its type to either double
or float .

Visit this page to learn more about di�erent types of data a variable can store.

Constants/Literals

A constant is a value (or an identi�er) whose value cannot be altered in a program. For

example: 1, 2.5, 'c' etc.

Here, 1, 2.5 and ' c' are literal constants. Why? You cannot assign di�erent values

to these terms.

You can also create non-modi�able variables in C programming. For example:

const double PI = 3.14;

Notice, we have added keyword const .

https://www.programiz.com/c-programming/c-data-types

Here, PI is a symbolic constant. It's actually a variable however, it's value cannot be

changed.

const double PI = 3.14;
PI = 2.9; //Error

Below are the di�erent types of constants you can use in C.

1. Integers

An integer is a numeric constant (associated with number) without any fractional or

exponential part. There are three types of integer constants in C programming:

decimal constant(base 10)

octal constant(base 8)

hexadecimal constant(base 16)

For example:

Decimal constants: 0, -9, 22 etc
Octal constants: 021, 077, 033 etc
Hexadecimal constants: 0x7f, 0x2a, 0x521 etc

In C programming, octal starts with a 0 , and hexadecimal starts with a 0x .

2. Floating-point constants

A �oating point constant is a numeric constant that has either a fractional form or an

exponent form. For example:

-2.0
0.0000234
-0.22E-5

Note: E-5 = 10

3. Character constants

A character constant is created by enclosing a single character inside single quotation

marks. For example: 'a' , 'm' , 'F' , '2' , '}' etc;

-5

4. Escape Sequences

Sometimes, it is necessary to use characters which cannot be typed or has special

meaning in C programming. For example: newline(enter), tab, question mark etc. In

order to use these characters, escape sequence is used.

For example: \n is used for newline. The backslash \ causes escape from the normal

way the characters are handled by the compiler.

Escape Sequences

Escape Sequences Character

\b Backspace

\f Form feed

\n Newline

\r Return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\' Single quotation mark

\" Double quotation mark

\? Question mark

\0 Null character

5. String Literals

A string literal is a sequence of characters enclosed in double-quote marks. For example:

"good" //string constant
"" //null string constant
" " //string constant of six white space
"x" //string constant having single character.
"Earth is round\n" //prints string with newline

6. Enumerations

Keyword enum is used to de�ne enumeration types. For example:

enum color {yellow, green, black, white};

Here, color is a variable and yellow , green , black and white are the enumeration

constants having value 0, 1, 2 and 3 respectively. For more information, visit page: C

Enumeration.

You can also de�ne symbolic constants using #define . To learn more, visit: C Macros

https://www.programiz.com/c-programming/c-enumeration
https://www.programiz.com/c-programming/c-preprocessor-macros#macros

C Programming Data Types

In this tutorial, you will learn about data types and how to declare a variable in C
programming.

Table of Contents

C data types
Fundamental data types

int
�oat and double
char
void
bool
enum
Complex types

short and long
signed and unsigned
Derived types

In C programming, variables (memory location) should be declared before it can be
used. Similarly, a function also needs to be declared before use.

Data types simply refers to the type and size of data associated with variables and
functions.

Data type can be either fundamental (provided in C compiler), or derived (derived from
fundamental data types).

Fundamental data types

This section focuses on commonly used fundamental data types.

int

https://www.programiz.com/c-programming/c-variables-constants
https://www.programiz.com/c-programming/c-functions

Integers are whole numbers that can have both zero, positive and negative values but
no decimal values. Example: 0 , -5 , 10

We can use int for declaring an integer variable.

int id;

Here, id is a variable of type integer.

You can declare multiple variable at once in C programming. For example:

int id, age;

The size of int is 4 bytes (32 bits) in most compilers. Hence, it can take 2 distinct
states: -2 ,-2 +1, ..., -1, 0, 1, 2, ..., 2 -2, 2 -1

, that is, from -2147483648 to 2147483647 .

float and double

float and double are used to hold real numbers.

float salary;
double price;

In C, �oating-point numbers can also be represented in exponential. For example:

float normalizationFactor = 22.442e2;

What's the difference between float and double ?

The size of float (single precision �oat data type) is 4 bytes. And the size of double
(double precision �oat data type) is 8 bytes.

char

Keyword char is used for declaring character type variables. For example:

char test = 'h';

32

31 31 31 31

The size of character variable is 1 byte.

void

void is an incomplete type. It means "nothing" or "no type". You can think of void as
absent.

For example, if a function is not returning anything, its return type should be void .

Note that, you cannot create variables of void type.

bool

Traditionally, there was no boolean type in C. However, C99 de�nes a standard boolean
type under <sdbool.h> header �le. A boolean type can take one of two values, either
true or false . For example:

#include <stdio.h>
#include <stdbool.h>

int main() {
 bool a = true;

 return 0;
}

If you are a programming newbie, we recommend you to skip the content below for
now and go on to the next chapter.

enum

You can create an enumerated type using enum keyword. An enumeration consists of
integral constants. For example:

enum suit { club, diamonds, hearts, spades};

Here, a variable suit of enum type is de�ned. To learn more on how it works, visit: C
enums

https://www.programiz.com/c-programming/c-enumeration

Complex types

In ISO C99, support for the complex type was standardized.

If you include complex.h header �le in your program, you can use complex as a
keyword to create and work with complex numbers. For example:

#include <stdio.h>
#include <complex.h>

int main() {
 int complex z = 2 + 1 * I;
}

To learn more, visit: How to work with complex numbers in C?

short and long

If you need to use large number, you can use type speci�er long . Here's how:

long a;
long long b;
long double c;

Here variables a and b can store integer values. And, c can store a �oating-point
number.

If you are sure, only a small integer ([−32,767, +32,767] range) will be used, you can
use short .

short d;

You can always check size of a variable using sizeof() operator.

#include <stdio.h>
int main() {
 short a;
 long b;
 long long c;
 long double d;

 printf("size of short = %d bytes\n", sizeof(a));
 printf("size of long = %d bytes\n", sizeof(b));
 printf("size of long long = %d bytes\n", sizeof(c));

printf("size of long double= %d bytes\n", sizeof(d));

https://stackoverflow.com/questions/6418807/how-to-work-with-complex-numbers-in-c

 printf(size of long double %d bytes\n , sizeof(d));
 return 0;
}

signed and unsigned

In C, signed and unsigned are type modi�ers. You can alter the data storage of a data
type by using them. For example:

unsigned int x;
int y;

Here, the variable x can hold only zero and positive values because we have used
unsigned modi�er.

Considering the size of int is 4 bytes, variable y can hold values from -2 to 2 -1 ,
whereas variable x can hold values from 0 to 2 -1 .

Derived types

Here's a list of derived types in C. These topics will be discussed in their respective
chapter.

Array type
Pointer type
Structure type
Union type
Function type
Atomic type

31 31

32

https://www.programiz.com/c-programming/c-arrays
https://www.programiz.com/c-programming/c-pointers
https://www.programiz.com/c-programming/c-structures
https://www.programiz.com/c-programming/c-unions
https://www.programiz.com/c-programming/c-functions
https://stackoverflow.com/questions/36955884/what-are-atomic-types-in-the-c-language

C Input Output (I/O)

This tutorial focuses on two in-built functions printf() and scanf() to perform I/O task

in C programming. Also, you will learn to write a valid program in C.

Table of Contents

Example: C Output
Example: C Integer Output
Example: C Integer Input/Output
Example : C Floats Input/Output
Example: C Character I/O
ASCII Code
Example: C ASCII Code
More on Input/Output of �oats and Integers

C programming has several in-built library functions to perform input and output tasks.

Two commonly used functions for I/O (Input/Output) are printf() and scanf() .

The scanf() function reads formatted input from standard input (keyboard) whereas
the printf() function sends formatted output to the standard output (screen).

Example 1: C Output

Output

C Programming

How this program works?

#include <stdio.h> // Including header file to run printf() functi
int main()
{
 printf("C Programming"); // Displays the content inside quotation
 return 0;
}

https://www.programiz.com/c-programming/library-function

All valid C program must contain the main() function. The code execution begins
from the start of main() function.
The printf() is a library function to send formatted output to the screen. The
printf() function is declared in "stdio.h" header �le.

Here, stdio.h is a header �le (standard input output header �le) and #include is
a preprocessor directive to paste the code from the header �le when necessary.
When the compiler encounters printf() function and doesn't �nd stdio.h
header �le, compiler shows error.
The return 0; statement is the "Exit status" of the program.

Example 2: C Integer Output

#include <stdio.h>
int main()
{
 int testInteger = 5;
 printf("Number = %d", testInteger);
 return 0;
}

Output

Number = 5

Inside the quotation of printf() function, there is a format string "%d" (for integer). If
the format string matches the argument (testInteger in this case), it is displayed on
the screen.

Example 3: C Integer Input/Output

#include <stdio.h>
int main()
{
 int testInteger;
 printf("Enter an integer: ");
 scanf("%d",&testInteger);
 printf("Number = %d",testInteger);
 return 0;
}

Output

Enter an integer: 4
Number = 4

The scanf() function reads formatted input from the keyboard. When user enters an
integer, it is stored in variable testInteger .

Note the '&' sign before testInteger ; &testInteger gets the address of testInteger
and the value is stored in that address.

Example 4: C Floats Input/Output

#include <stdio.h>
int main()
{
 float f;
 printf("Enter a number: ");
// %f format string is used in case of floats
 scanf("%f",&f);
 printf("Value = %f", f);
 return 0;
}

Output

Enter a number: 23.45
Value = 23.450000

The format string "%f" is used to read and display formatted in case of �oats.

Example 5: C Character I/O

#include <stdio.h>
int main()
{
 char chr;
 printf("Enter a character: ");
 scanf("%c",&chr);
 printf("You entered %c.",chr);
 return 0;
}

Output

Enter a character: g
You entered g.

Format string %c is used in case of character types.

Little bit on ASCII code

When a character is entered in the above program, the character itself is not stored.
Instead, a numeric value(ASCII value) is stored.

And when we displayed that value using "%c" text format, the entered character is
displayed.

Example 6: C ASCII Code

Output

You can display a character if you know ASCII code of that character. This is shown by
following example.

Example 7: C ASCII Code

#include <stdio h>

#include <stdio.h>
int main()
{
 char chr;
 printf("Enter a character: ");
 scanf("%c",&chr);

 // When %c text format is used, character is displayed in case of
 printf("You entered %c.\n",chr);

 // When %d text format is used, integer is displayed in case of ch
 printf("ASCII value of %c is %d.", chr, chr);
 return 0;
}

Enter a character: g
You entered g.
ASCII value of g is 103.
The ASCII value of character 'g' is 103. When, 'g' is entered, 103 is s

#include <stdio.h>
int main()
{
 int chr = 69;
 printf("Character having ASCII value 69 is %c.",chr);
 return 0;
}

Output

Character having ASCII value 69 is E.

More on Input/Output of floats and Integers

Integer and �oats can be displayed in di�erent formats in C programming.

Example #7: I/O of Floats and Integers

Output

4 digit integer right justified to 6 column: 9876
4 digit integer right justified to 3 column: 9876
Floating point number rounded to 2 digits: 987.65
Floating point number rounded to 0 digits: 988
Floating point number in exponential form: 9.876543e+02

#include <stdio.h>
int main()
{

 int integer = 9876;
 float decimal = 987.6543;

 // Prints the number right justified within 6 columns
 printf("4 digit integer right justified to 6 column: %6d\n", integer

 // Tries to print number right justified to 3 digits but the number
 printf("4 digit integer right justified to 3 column: %3d\n", integer

 // Rounds to two digit places
 printf("Floating point number rounded to 2 digits: %.2f\n",decimal);

 // Rounds to 0 digit places
 printf("Floating point number rounded to 0 digits: %.f\n",987.6543);

 // Prints the number in exponential notation(scientific notation)
 printf("Floating point number in exponential form: %e\n",987.6543);
 return 0;
}

C Programming Operators

C programming has various operators to perform tasks including arithmetic,

conditional and bitwise operations. You will learn about various C operators and how

to use them in this tutorial.

Table of Contents

C Operators
Arithmetic Operators
Increment and Decrement Operators
Assignment Operators
Relational Operators
Logical Operators
Bitwise Operators
Other Operators

Comma Operator
sizeof Operator
Ternary Operator

An operator is a symbol which operates on a value or a variable. For example: + is an
operator to perform addition.

C has wide range of operators to perform various operations.

C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction
and multiplication on numerical values (constants and variables).

Operator Meaning of Operator

+ addition or unary plus

- subtraction or unary minus

Operator Meaning of Operator

* multiplication

/ division

% remainder after division(modulo division)

Example 1: Arithmetic Operators

// C Program to demonstrate the working of arithmetic operators
#include <stdio.h>

int main()
{
 int a = 9,b = 4, c;

 c = a+b;
 printf("a+b = %d \n",c);

 c = a-b;
 printf("a-b = %d \n",c);

 c = a*b;
 printf("a*b = %d \n",c);

 c=a/b;
 printf("a/b = %d \n",c);

 c=a%b;
 printf("Remainder when a divided by b = %d \n",c);

 return 0;
}

Output

a+b = 13
a-b = 5
a*b = 36
a/b = 2
Remainder when a divided by b=1

The operators +, - and * computes addition, subtraction and multiplication respectively
as you might have expected.

In normal calculation, 9/4 = 2.25 . However, the output is 2 in the program.

It is because both variables a and b are integers. Hence, the output is also an integer.
The compiler neglects the term after decimal point and shows answer 2 instead of 2.25.

The modulo operator % computes the remainder. When a = 9 is divided by b = 4 ,
the remainder is 1. The % operator can only be used with integers.

Suppose a = 5.0, b = 2.0, c = 5 and d = 2. Then in C programming,

a/b = 2.5 // Because both operands are floating-point variables
a/d = 2.5 // Because one operand is floating-point variable
c/b = 2.5 // Because one operand is floating-point variable
c/d = 2 // Because both operands are integers

Increment and decrement operators

C programming has two operators increment ++ and decrement -- to change the value
of an operand (constant or variable) by 1.

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1.
These two operators are unary operators, meaning they only operate on a single
operand.

Example 2: Increment and Decrement Operators

Output

++a = 11
--b = 99

// C Program to demonstrate the working of increment and decrement opera
#include <stdio.h>
int main()
{
 int a = 10, b = 100;
 float c = 10.5, d = 100.5;

 printf("++a = %d \n", ++a);

 printf("--b = %d \n", --b);

 printf("++c = %f \n", ++c);

 printf("--d = %f \n", --d);

 return 0;
}

++c = 11.500000
++d = 99.500000

Here, the operators ++ and -- are used as pre�x. These two operators can also be used
as post�x like a++ and a-- . Visit this page to learn more on how increment and
decrement operators work when used as post�x.

C Assignment Operators

An assignment operator is used for assigning a value to a variable. The most common
assignment operator is =

Operator Example Same as

= a = b a = b

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

%= a %= b a = a%b

Example 3: Assignment Operators

// C Program to demonstrate the working of assignment operators
#include <stdio.h>
int main()
{
 int a = 5, c;

 c = a;
 printf("c = %d \n", c);

 c += a; // c = c+a
 printf("c = %d \n", c);

 c -= a; // c = c-a
 printf("c = %d \n", c);

 c *= a; // c = c*a
 printf("c = %d \n", c);

 c /= a; // c = c/a
 printf("c = %d \n", c);

https://www.programiz.com/article/increment-decrement-operator-difference-prefix-postfix

p , ;

 c %= a; // c = c%a
 printf("c = %d \n", c);

 return 0;
}

Output

c = 5
c = 10
c = 5
c = 25
c = 5
c = 0

C Relational Operators

A relational operator checks the relationship between two operands. If the relation is
true, it returns 1; if the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example

== Equal to 5 == 3 returns 0

> Greater than 5 > 3 returns 1

< Less than 5 < 3 returns 0

!= Not equal to 5 != 3 returns 1

>= Greater than or equal to 5 >= 3 returns 1

<= Less than or equal to 5 <= 3 return 0

Example 4: Relational Operators

// C Program to demonstrate the working of arithmetic operators
#include <stdio.h>
int main()
{
 int a = 5, b = 5, c = 10;

printf("%d == %d = %d \n" a b a == b); // true

https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-for-loop

 printf(%d == %d = %d \n , a, b, a == b); // true
 printf("%d == %d = %d \n", a, c, a == c); // false

 printf("%d > %d = %d \n", a, b, a > b); //false
 printf("%d > %d = %d \n", a, c, a > c); //false

 printf("%d < %d = %d \n", a, b, a < b); //false
 printf("%d < %d = %d \n", a, c, a < c); //true

 printf("%d != %d = %d \n", a, b, a != b); //false
 printf("%d != %d = %d \n", a, c, a != c); //true

 printf("%d >= %d = %d \n", a, b, a >= b); //true
 printf("%d >= %d = %d \n", a, c, a >= c); //false

 printf("%d <= %d = %d \n", a, b, a <= b); //true
 printf("%d <= %d = %d \n", a, c, a <= c); //true

 return 0;

}

Output

5 == 5 = 1
5 == 10 = 0
5 > 5 = 0
5 > 10 = 0
5 < 5 = 0
5 < 10 = 1
5 != 5 = 0
5 != 10 = 1
5 >= 5 = 1
5 >= 10 = 0
5 <= 5 = 1
5 <= 10 = 1

C Logical Operators

An expression containing logical operator returns either 0 or 1 depending upon whether
expression results true or false. Logical operators are commonly used in decision making
in C programming.

Operator Meaning of Operator Example

https://www.programiz.com/c-programming/c-if-else-statement

Operator Meaning of Operator Example

&&
Logial AND. True only if all
operands are true

If c = 5 and d = 2 then, expression ((c
== 5) && (d > 5)) equals to 0.

||
Logical OR. True only if
either one operand is true

If c = 5 and d = 2 then, expression ((c
== 5) || (d > 5)) equals to 1.

!
Logical NOT. True only if the
operand is 0

If c = 5 then, expression ! (c == 5)
equals to 0.

Example #5: Logical Operators

// C Program to demonstrate the working of logical operators

#include <stdio.h>
int main()
{
 int a = 5, b = 5, c = 10, result;

 result = (a == b) && (c > b);
 printf("(a == b) && (c > b) equals to %d \n", result);

 result = (a == b) && (c < b);
 printf("(a == b) && (c < b) equals to %d \n", result);

 result = (a == b) || (c < b);
 printf("(a == b) || (c < b) equals to %d \n", result);

 result = (a != b) || (c < b);
 printf("(a != b) || (c < b) equals to %d \n", result);

 result = !(a != b);
 printf("!(a == b) equals to %d \n", result);

 result = !(a == b);
 printf("!(a == b) equals to %d \n", result);

 return 0;
}

Output

(a == b) && (c > b) equals to 1
(a == b) && (c < b) equals to 0
(a == b) || (c < b) equals to 1
(a != b) || (c < b) equals to 0
!(a != b) equals to 1
!(a == b) equals to 0

Explanation of logical operator program

(a == b) && (c > 5) evaluates to 1 because both operands (a == b) and (c
> b) is 1 (true).
(a == b) && (c < b) evaluates to 0 because operand (c < b) is 0 (false).
(a == b) || (c < b) evaluates to 1 because (a = b) is 1 (true).
(a != b) || (c < b) evaluates to 0 because both operand (a != b) and (c <
b) are 0 (false).
!(a != b) evaluates to 1 because operand (a != b) is 0 (false). Hence, !(a != b)

is 1 (true).
!(a == b) evaluates to 0 because (a == b) is 1 (true). Hence, !(a == b) is 0

(false).

Bitwise Operators

During computation, mathematical operations like: addition, subtraction, addition and
division are converted to bit-level which makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-level operations.

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

Visit bitwise operator in C to learn more.

Other Operators

Comma Operator

Comma operators are used to link related expressions together. For example:

https://www.programiz.com/c-programming/bitwise-operators

int a, c = 5, d;

The sizeof operator

The sizeof is an unary operator which returns the size of data (constant, variables,
array, structure etc).

Example 6: sizeof Operator

Output

Size of int = 4 bytes
Size of float = 4 bytes
Size of double = 8 bytes
Size of char = 1 byte
Size of integer type array having 10 elements = 40 bytes

 C Ternary Operator (?:)

Ternary operator is a conditional operator that works on 3 operands.

Conditional Operator Syntax

conditionalExpression ? expression1 : expression2

The conditional operator works as follows:

#include <stdio.h>
int main()
{
 int a, e[10];
 float b;
 double c;
 char d;
 printf("Size of int=%lu bytes\n",sizeof(a));
 printf("Size of float=%lu bytes\n",sizeof(b));
 printf("Size of double=%lu bytes\n",sizeof(c));
 printf("Size of char=%lu byte\n",sizeof(d));
 printf("Size of integer type array having 10 elements = %lu bytes\n
 return 0;
}

The �rst expression conditionalExpression is evaluated �rst. This expression
evaluates to 1 if it's true and evaluates to 0 if it's false.
If conditionalExpression is true, expression1 is evaluated.
If conditionalExpression is false, expression2 is evaluated.

Example 7: C conditional Operator

Output

If this year is leap year, enter 1. If not enter any integer: 1
Number of days in February = 29

Other operators such as & (reference operator), * (dereference operator) and ->
(member selection) operator will be discussed in C pointers.

#include <stdio.h>
int main(){
 char February;
 int days;
 printf("If this year is leap year, enter 1. If not enter any integer
 scanf("%c",&February);

 // If test condition (February == 'l') is true, days equal to 29.
 // If test condition (February =='l') is false, days equal to 28.
 days = (February == '1') ? 29 : 28;

 printf("Number of days in February = %d",days);
 return 0;
}

https://www.programiz.com/c-programming/c-pointers

